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ABSTRACT 

Scale effects in cavitating flow are considered fur the so-called 

limited cavitation flow regime.    The effects on cavitation scaling of nu- 

clei and dissolved air in ordinary water are considered.    Previous work 

by the author is summarised and a theoretical study is made to gain in- 

sight into the relationship* *bat must hold between tht parameters which 

affect the inception of cavitation.   A simplified theory gives only rough 

qualitative agreement. \.ith experim**•". 

PART I 

TNIT7AL CONSIDERATIONS 

Introduction 
1* 

The pveser.t wo:'. :<   -    -ouc? to the author's ;.   eliminary report 

on the effects of body size and free /.ream veloci*v '")on cavitation on an 

immersed body.    Tl»e nomenclature of this report. v«H follow that used 

in the preliminary papc . 

It is useful to divide the flow of a li^ uw arouuv-        ?Ud body into 

three reginr.es which are called nowrikV..'i;i/.; *I:—  :^>ul cavitit*cn, 

and full cavity flow,  respectw   '•/.    Th-' e^e.1; »;/ ^.w« *HkJc«* control the 

behavior of flows in the uoncavi* i • • -? , egime " -».•.-> fc. *.n J^'ll known for 

some time.    For full cavity fl     a,   RclrV .***"**.. s-?   r .hat the essen- 

tial quantity fcr determining the flow geometry is the '    .i^tion number, 

K = (p  "P-J/TPV   • where  po and V    are the free stream values of the 

static pressure and velocity,  respecti  si-..   '"•''   {* -i? *A-   liquid density. 

Reichardt takes for p    *\c aa»v. cf r ') -«v« pressvtr^'   ^rhin the cavity. 

In the present work, p    will denote only the liquid vapci pressure. 

However, for the limited cavitation flow regime there is a definite lack 

of knowledge concerning the effects of body size, flow velocity,  and dis- 

solved air content upon the development of cavitatiuu.    \n fact, it is now 

customary to employ the cavitation number K as the orly significant 

parameter for describing all inviscid cavitating flows,    it is shown in 

this paper by both theoretical and experimental means that the use of 

*^ee bibliography on p<»g«j 38. 
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only the cavitation number for limited cavitation is an unjustified simplifi- 
cation. 

The objsct of this study is to determine the behavior of limited cavi- 

tation on a given body shape placed in a rectilinear flow of constant free 

stream velocity.   Such a flow is approximated in the test section of a 

water tunnel where the free stream velocity, free stream static pressure, 

and the amount of air dissolved in the water can be controlled as required. 

If one considers only this elementary flow configuration,  very simple ex- 

petiir»nts* can be performed.    For such experiments,  the spatial pres- 

sure distributions on the body surface will be known.    From these known 

pressure distributions and the free stream velocity,  pressure-time 

relationships can be calculated for a particle moving along the body sur- 

face with the liquid.    From such pressure-time functions,  one can study 

analytically the behavior of incipient cavitation with changing body scales. 

In this report such calculations are made and compared with experiment. 

Possible Origin of Cavitation 

For ordinary untreated water it will be assumed that there are nuclei 

containing air or water vapor,  or both, which are stabilized on small, 

solid particles in the liquid.    It is held that boiling or cavitation must be 

initiated from such nuclei,   since their absence would mean that very large 

surface tension forces must be overcome before cavitation can start.    The 

slight tension under which cavitation normally occurs lends plausibility to 

arguments favoring the existence of the nuclei.    If one supposes that cavi- 

tation originates from such small nuclei, then it must take them an ap- 

preciable time to grow to a macroscopic size.    It is clear that this growth 

time must be dependent upon the pressure to which the nuclei are subjected. 

If for a constant free stream pressure and velocity only the scale of the 

immersed body is changed,  the liquid flow may show corresponding changes 

in the cavitation due to changes in the time available for bubble growth. 

Under steady,  or almost steady,, conditions,  ordinary untreated water has 

a definite boiling point and has no appreciable tensile strength.    Such 

water will, however, withstand tensions if it is subjected to transient low 

pressures of short duration.    For water flowing around a solid body,   such 

short duration transient tensions can be produced on the water as it flows 

*The experiments performed for this study are described in Ref. i. 
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by the body surface.    It is possible that the differences in the transient ten- 

sions produced by changes in body length and free stream velocity can ac- 

count for corresponding differences in the state of cavitation.    It is the 

study of nucleus response under these transient pressure conditions that 

is of primary concern here. 

Summary of Previous Results 

In the preliminary report, the assumption that cavitation starts from 

small nuclei in the liquid gi-^s conditions for dynamically similar bubble 

growths,   it was found that no useful sc/'ng laws for limi'?d cavitation can 

be obtained from such sinnlarity arguments.   In fact, the similarity calcu- 

lations indicated that the cavitation number, K, is not the significant param- 

eter for defining the state of the flow in the limited cavitation flow regime, 

and that for £!«...» of the same liquid around geometrically similar bodies 

dynamically bimilaa growths of individual bubbles cannot be expected to 

obtain. 

The effects of body size on cavitation were then investigated experi- 

mentally for two f&irdlitsa of simple shapes in a steady rectilinear flow. 

The first experiments were performed on a family of 12% thick symmetri 

cal Joukowski hydrofoils of constant chord which spanned the High Speed 
3 

Water Tunnel te«-t sortie-.    Next,  R. W. Kermccn    supplied some experi- 

mental results for a serxc of rignt ci'-.-lar cylinders with hemispherical 

noses in *\xially symmetric flow. 

The important results of the experiments may be summarized as 

follows:   First, it was observed in connection with the high-speed motion 

picture studies that different cavitation numbers were required to obtain 

similar cavitation development on bodies of different size.    This behavior 

was ther. confirmed at one free stream velocity for a range of c a vita tier, 

numbers.    Second,  it was found that the cavitation number for the in- 

ception of cavitation increased with free stream velocity and,  in certain 

instances, for constant velocity,  the incipient cavitation number was found 

to increase with the size of the body. 
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PART IJ uoie 

THEORETICAL INVESTIGATIONS ° 
btfia 

Introduction to Theory 

The experimental results summarized above show that the cavitation 

number for incipient cavitation exhibits systematic changes with variations 

in the free-stream velocity,  and that for some conditions the incipient 

cavitation number at constant free-stream velocity changes with the scale 

of the body.   It is the purpose of thi* *e-*ic- to investigate the conditions 

for incipient cavitation by analytical means so that more precise ideas can 

be obtained about the relationships between the parameters which influence 

the behavior of the cavitation. 

The question of how a bubble grows from its original small nucleus 

to a macroscopic size is a dynamic problem,   since the observed varia- 

tions in the inception of cavitation are to be ascribed to differences in the 

transient tensions on the water produced by changes in body length and free 

streatn velocity.    The equation of motion for a spherical bubble of radius 

R(t) in an unlimited incompressible inviscid liquid is 

RR + |R2 = [P(R) - p(t)]/r , (i) 

where p    is the liquid density, p(R) is thfr liq<iid pressure at the bubble 

wall, and P(t) is the external pressure field in the liquid far from the 

bubble.    The superscribed dots, as usual,  stand for differentiations with 

respect to time.    Let v  be the surface tension of water,   p    the vapor 

pressure corresponding to the temperature of the liquio,  and p    the 

initial air pressure within the bubble before any growth from its initial 

size  R    has occurred.    If '.he babble is assumed to expand under iso- o 
thermal conditions,  then 

p(R)   =   pv      ~   •   PJ—)      ' <« 

P(t) will be determined by the flow over the solid body. 

Basic Assumptions and Definitions 

Before proceeding with the detailed formulation of the theory, a 

statement of the basic asrum.tion- underlying the whole analysis is re- 

quired. 
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First,  vi«?ooi-3 effects are entirely neglected in the present work. 

For example,  it is known that the minimum pressures in the liquid occur 

on the immersed body.    In fact,  the pressures decrease slightly as one 

proceeds through the boundary layer toward the body.    In vitew of the very 

small nucleus size it would seem that at least in the initial stages of bub- 

ble growth the phenomena might be restricted entirely to the boundary 

layer.    The consideration cf boundary layer effects requires further experi- 

mental information which is now being accumulated.    The present discus- 

sion will not take them into account. 

S*--T.'i.  the la'ceraction between the flow around t"..    *   '_• r?.c.ug bubble 

and the flow of the liquid around the immersed ooay is not considered. 

Thus, the motion of the expanding bubole will be treated as though the 

liquid is infinite in all directions and the velocity and pressure relation- 

ships on the model will ignore the presence of cavitation.    The effect of 

the flow around the body is related to the bubble growth through the P(t) 

term in the equation of motion for the bubble. 

Third,  the bubble is assumed to move with the fluid.    For the very 

small bubbles considered here, buoyant forces ar: small and the viscous 

drag will be high so that any relative motion between the bubble and the 

water will be very small. 

Fourth, the bubbles are assumed to be spherical. 

In this studv it is *i.'\.->o-..jd that cavitation is initiated from & ..: 11 
fr 

nuclei which contain air or water vapor,   or both,   stabilized on small, 

sold particles in the liquid.    In the noncavitating flow regime it is as- 

sumed that the nuclei do not have an opportunity to grow into bubbles of 

macroscopic or visible size.    The difference,  then.,  between the non- 

cavitating and cavitating flow regimes is that in the latter,  the nuclei are 

exposed to a pressure environment favorable to bubble growth for a period 

sufficient to allow for the appearance of macroscopic bubbles.    The ap - 

pearance of macroscopic bubble:  spends upon the response of the nuclei 

to the transient low pressure created by the flow of water hround the body. 

This bubble growth problem will be determined by two conditions.    First, 

the initial conditions  R(0) = 0 and R(0) = R    will be prescribed. 

*It seems probable that the nuclei in a liquid have a range of sizes, 
but it will be assumed here that all nuclei are of equal effective radius  R . 
Their size will be estimated in   z    subsequent section. 
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Second, the pressure-time remtionship or "forcing function" which acts 

on the nuclei and promotes their growth is prescribed if one knows the 

pressure distribution around the immersed body, the body size,  the 

free stream velocity, and the free stream static pressure.    This simple 

determination of the forcing function is a consequence of the fundamental 

assumptions listed above. 

For a given flow situation, the time available for bubble growth is 

fixed by the size of the. solid body and the free stream velocity.    Incipient 

cavxtn'to;; w*t« be said to exert if a nucleus grow* {TOTS its initial radius 

R   to * radius of one millimeter during the time it is exposed to the low 

pressure which favors growth.    This value for the final bubble radius 

was selected becvjse a bubble of one millimeter is visible to the unaided 

eye and this arbitrary bubble size is of the same order of magnitude as 

the bubbles of visible incipient cavitation on bodies in the water tunnel. 

Using this experimentally derived estimate,  one can now ask:    Given a 

fixed time for growth, determined by the free stream velocity and body 

size, what will be the free stream static pressure  p   (and hence K) at 

which the final bubble radius will be one millimeter? 

Stability of Gas Nuclei 

For practically all cases of technical interest,  the water will con- 

tain dissolved air.   Accordingly, the nuclei will contain air ae well as 

water vapor.    However, if surface tration forces act on these small 

bubbles, the air will be driven from the nuclei into solution with the sur- 

rounding water.      On the other hand, a stable nucleus can exist if air or 

vapor bubbles are attached to small solid particles in the liquid.    In this 

case the effective surface tension must be zero.    Therefore, if the effective 

surface tension is initially zero,  the nuclei can exist indefinitely,  and by 
7 

Henry's Law   the initial air pressure in the gas pocket is proportional to 

the concentration of air dissolved in the water.    As the bubble grows from 

its initial effective radius  RQ, the surface tension will increase to the full 

value  2c/R.    The required behavior of the surface tension may be approxi- 

mated by p    =  2S(R, (r)/R where the "surface tension law",    S(R,<r ),  is 

characterized by S(R0,<r)  = 0 and S(R,,(r)  = <r .    Let Rj be that bubble 

radius at which the surface tension law first achieves, its full value and 

put R.  = nR  .    The simplest assumption which will approximate the 
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complex variation 01 the surface tension law with bubble growth is that 

S(R,r ) is a linear function of R.    Then S = <R ~ R )<r/R (n - 1) for o o 
R„^   RinR    and S = v when RiknR  ,    If one puts   r « R/R , then O O O r o 
the surface  tension law can be written in the form 

c 
——r<r   »      1 ^T *Ln   , 

S   =    < (3) 
(T 

It must he borne in mind that the surface tension law defined above is 

in a atase su« attempt to account for an av£x.»gc behavior of a large number 

of nuclei of many possible initial sizes.    Compared with the atomic or 

molecular scale, the nuclei are macroscopic structures and hence the laws 

of surface tension for macroscopic systems are applicable.   It has been 

argued that in order that such systems may exist in a stable state it is 

necessary to add a solid phase to the gas-water system,  and this has re- 

sulted in the introduction of another parameter, namely, the slope,  l/n, 

of the surface tension law.    To ascribe au average behavior to such a large 

number of nuclei with many possible initial sizes is reasonable because 

experiments show that the zone of cavitation numbers at which cavitation 

starts is very narrow.    Thus it is possible to assign a definite value of the 

cavitation number for the inception of cavitation for a given flow situation. 

Primary Parameters and Pressure-Time Relationships 

The problem then is to study the behavior of the "average" nucleus 

in the transient pressure regions caused by the flow of the nuclei-containing 

water around submerged bodies of various sizes at various flow velocities. 

Thus,  the relationships between several parameters must be studied in 

order to obtain approximate quantitative results which may then be used 

to guide further experimental work.    In particular,   one must study the ef- 

fects upon incipient cavitation of bubble air content,  p   ,   of the nucleus 

size,   R  , and of change? in the slope of the surface tension law (l/n). 

Furthermore,  estimates for the initial radius will be found to depend upon 

the nucleus air content and the slope of the surface tension law,   so that 

all of these factors are interrelated.    However,  it will be possible to 

make some theoretical conclusions about the effects of air content and 

surface tension law slope.    To test such findings more detailed experimental 
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rcsults are required.    Unfortunately,  there are at present almost no re- 

liable experimental data for the effect' of dissolved air content Upon the 

inception of cavitation.   Studies are How under way for determination of 
* 

the effect of dissolved air content on incipient cavitation. 

With regard to pressure-time relationships, no exact account will 

be taken of the many pressure distributions which can arise from all of 

the various body shapes that one may wish to consider in a liquid flow. 

However, the general pressure change, first falling and then rising, 

common to all such bodies, will be rppTr-4 mated by two parabola-like 

curves joined at the point of minimum pressure.    The term "parabola- 

like" is U3ed because the actual functions used will be parabolic in time 

and the resulting spatial pressure distributions will differ slightly from 

the true parabolic shape.    Two curves joined at the minimum pressure 

point are used so that actual pressure distributions, which are seldom 

symmetrical about the minimum pressure point, can be more closely 

matched.    It is the general qualitative behavior of the many possible 

pressure distributions that is of importance here.   No attempt will be 

made to find an exact forcing function for any specific body shape. 

Next, certain conditions will be determined which will enable the 

"parabolic" pressure distribution to be replaced by a dynamically equiva- 

lent step function pressure distribution.    The detailed numerical Integra- • 

t&ons of th* equation of motion for the bubble will be made by using this 

xurtaer simplification.    Two distinct advantages are gained by the use of 

the step function.    First,  it turns out that for a given   n,  or surface ten- 

sion law slope, if the parabolic approximation is used, a three parameter 

family of solutions for Eq. (1) must be found.    However, when the step 

function pressure distribution is used,  only a two parameter family of 

solutions is required.    Second, the use of the equivalent step function 

allows one to find certain important relationships between the primary 

parameters involved in the problem.    These relationships are n„t 

readily determined if the pressure is not constant during some time inter- 

val. 
It was mentioned above that the only connection between the bubble 

growth and the liquid flow over the body is the choice of P(t) in the equa- 

tion of motion for the bubble wall. For the step function pressure distri- 

bution it is evident that P(t) can be written as 
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P(t) 

I' •W 
t <0   , 

ta*0  . 
W 

p   and V    are the free stream static pressure and velocity, re- el o 

3 
4) 

^S. Time, t 

where 

spectively,  p  is the liquid density, and  a   is the pressure coefficient in 

the low pressure region.    Fig. 1 

shows the step function pressure 

  law. 

tf i' in rerr.*<»»»brr«?i thai, 

the feuoVU is assumed to grow 

———————— isothermally, and if account is 

taken of Eqs. (3) and (4), the 

equation of motion (Eq.  1 ) 

Fig. 1 becomes 

o 
v •»» o 

o 
3       . 

L> 

RR • |R' .....$- 

S(R.r) I 
V - P~+TPV,   a 2 

o . t > 0.   (5) 

The initial conditions are  R(0) a RQ and R(0) = 0. 

Estimates for Initial Effective Bubble Radius 

From inspection of Eqs. (3) and (5) one sees that the forces tending 

to retard the bubble growth are a maximum at R = nR  .    If the bubble 

grows in such a manner that R just reaches nR   with zero velocity, it 

turns out that the time required for such growth will be infinite and 

cavitation will not occu> .    On the other hand, if the forces reach equi- 

librium when R - nR     he motion will have considerable momentum, and o 
the bubble growth will be little influenced by the retarding forces.    Cavi- 

tation will then be well started.    One can use this condition of force equi- 

librium together with experimental values for cavitating flow to obtain an 

estimate of the initial radius  R  .    Thus,   setting the right hand side of 

Eq. (5) equal to zero,  one finds that for R = nR 

- \       2      pa Z9 

nR. 
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0 I t S 4 S 
SUSSLC SURFACC TENSION LAW HMAMCT1W, n. 

Fig. 2 - E:    -^ates for the initial effective bubble radius under 
various dissolved air »«<d surface tension law conditions 

where K is the cavitation number, (p   - p )/(l/2 pV   ).    Experimental values 

of K and V   were taken from the data for incipient cavitation number for 
° 1 the Joukowski hydrofoils,   and curves of R   versus   n   for various air con- 

tents, p , were calculated.    The results are shown in Fig. 2.  (V   = 30 fps = a *  o 
914 cm/sec, K • 0.30,   <r = 70 dynes/cm, a = 0.53).    Inspection of the 

R   vs.    n   curves shows that except for the case of no dissolved air in the 

water, the variations in the initial radius with the surface tension law slope 

are not large.    Further,  since R   is given by 

R_   s 
2<r 

n(a-K)(l/2Pv/) • p /a* 

L 
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an underestimate of the pressure difference (a - K) results in an over- 

estimate of R  .    In using experimental values of (a - K) for incipient 

cavitation",  one must recognize that such an underestimate of (a - K) is 

being made.    The chief value of the calculations is that they show that an 

initial radius of the order of  10     cm is reasonable {Fig. 2), 

Critical Conditions for Cavitation 

As was mentioned above, the forces tending to retard bubble growth 

reach a maximum at R = « R .    However,  if the bubble motion acquires 

enough momentum before reaching this point,  the bubv>ie will jjr-rv-  -htDUgb 

this critical region even if the net force acting on the bubble In this region 

tends to collapse it.    On the other hand, for certain values of the coef- 

ficients in the equation of motion (5), the small radius  nR   will not be 

greatly exceeded, and by definition the condition for incipient cavitation 

will not be fulfilled.    In this section relationships will be derived between 

these coefficients which will define the threshold of visible cavitation. 

Before deriving the relationships between the coefficients, the 

equation of motion will be rewritten in dimensionless form.    If one puts 

r = R(t)/R    and T = t   y2<r /p R       Eq.  (5) becomes 

:r    .    3  /drf   _ d2r    ^    3   /dry x   \ , T  1? * I7*'     -••-,-< 
1 
—       i r 

v. 

(6) 

r ^ n   , 

where the "bubble driving parameter"  o    is given by 

1    ,, 2 „ 2 P   - P    + T PV     a R   pV *v   *o     Zr   o ,        „.»      or   o                                    ,_. a   =     .       =     (a - K)     , (7) 
2<r/R 4 <r o 

and the "air content parameter"   Y   is 

Pa 
V     -     7—      • (8) 

2T/RO 



The initial conditions are then 

12- 

r(0) = i ,    -4£i2l  .   0   . 
dr 

(9) 

By recognizing that 

<i2r 

• f (SJ 
dr\     _     1      _d_ 

Tr7   dr ' IS 
(•Ac <*?« wilt    ib-j f^rsc integral of E".l6tas 

i    3/dr 
T* \dT ;• 

|(r  -1) <• Ylnr -< 

1     /r3-l        r2-l\ 
in 1-T z-J 

(10) 

r 
T 

n   + n+ 1 n 

where the initial conditions,  Eq. (9).  have been used and the two integrals 

have been matched at r = n.    Equation (10) simply states that the change 

in the kinetic energy during the expansion is equal to the work done in the 

course of the motion.    If one lets  W(r) represent the terms on the right- 

hand side of Eq. 10, then for small enough values of the bubble driving 

parameter, a  ,- the function W(r) is 

very near a cubic polynomial, as 

shown schematically in Fig. 3.    The 

value of r, for which W has its iso- 

lated minimum,  will be called    r.. 

It can be shown that for n greater 

than  1  the minimum of W  occurs at 

a value of r. greater than n.    Since 

the kinetic energy is zero for   r = 1, 

it will again be zero at the minimum 

of W if Wjnin = 0.    It can also be 

shown that the time required for the 

bubble to grow to the value   r.,  which corresponds to a zero minimum of 

W,  is logarithmically infinite.    Thus,  if the bubble driving parameter, a  , 

and the bubble air content parameter, V,  are chosen in such a way that 

Wmin = 0.  then cavication will not occur under any circumstance.    One may 

x 

0 
*. 
oo 
c •a , 
w • 
c 
o 

•o 
M u 
o 
;* 

Dimensionless radius,   r 

Fig. 3 
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call such values of the bubble driving parameter, a • and the bubble air 

content parameter, Y, critical values.    These critical values are denoted 

by a    and Y  ,  respectively.   A relationship between the critical values 

a, and Y    will now be found from the conditions W(r.) = 0 and 

dW(rx)/dr a 0. 

From Eq.(lO) the minimum conditions give 

W(rj)   =   — (rj3- 1)   +   Yc?urj 
n + n + 1 

^-    f =   0 
6 

and 
dW(rj) ,        Y 
 L    =   a    r,    +   —    -   r.    =   0   . 

dr c    1 rj l 

Because the minimum occurs for  r. > n,   only the part of the inte- 

gral (10) for   rkn U required.    If   r    is regarded as a fixed parameter, 

a    and Y    are given in the parametric form, 

a      = c 

2                    n   +n+l 
- rx   i» TX   -    -g  

T rf-l 
-   T{   in » 

(11) 

and Y      =   r.2   -  a   r 3 

c 1 c   1 

The minimum value of r.   corresponds to Y    =0 and the root of 0 ; 
2 2 ^* 

r,    - a   r.    of physical significance is   r, = l/o   •    Substitution of this re 

suit for  r. into    a     (Eq.   11)  gives 

n   + n+1 +1/2=0. Y     =  0 . c (12) 

Equation (12) has one real root for  a  .    When   a    is real,  it is expedient 

to solve for  n   in terms of a  •    Since   n ==i 1,   Eq. (12) gives for the posi- 

tive root 

n    =   — v7 3a3-3a2H c c - 1 
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Fig. 4 - The critical conditions for the occurrence of cavitation 

Taking values of a    from 0.1 to 1.0, one finds the corresponding values 

of n and r..    These results were plotted.    For various fixed values of the 

surface tension slope number, n, the values of r,   and  a    for   Y    * 0 w • l c c 
were taken from this curve and then larger values of r. were selected to 

compute  a     and v   from Eqs. (11).     The results of these computations are 

graphically presented in Fig. 4.     These curves of the critical driving 

parameter,  o   ,   as a function of the critical air-content parameter, Y   , 

are the loci of points for which the time required for a bubble to grow 

from its initial size to a size near aR     (or larger) is infinite.     For 

example(  if for a given slope ('/») of the surface tension law, a value of 

^Actually, the growth is from   r * 1   to   r=rj^n with rj *C<C 10 n. 
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a   greater than   a    is chosen at a fixed value of the air content parameter, 

V, a finite time will be required for a bubble to reach a definite radius. 

Further,  if the slope of the surface tension curve is increased (n decreased) 

the bubble growth time increases without limit as   a approaches   o   . 

Numerical Calculations wi»h the Step Function Pressure Law 

In order that definite numerical calculations can be u.ade, values of 

n and R    must be chosen.    If the original bubble is stabilized on only a 

portion of an unwetted solid particle,  it seems plausible that the bubble 

must grow to several times its initial size before the ?\iri-»; c   -cn&iva law 

reaches its full value a .    For the present calcvuau^us a value of 5 will 

be taken for the parameter, n,  in the surface tension law.   If one takes 

account of the overestimate contained in the curves of R    versus   n 
°        -4 (Fig. 2), a value for the initial effective radius,  R  ,  of 2 x 10      cm. 

seems reasonable. 

In accordance with the definition of incipient cavitation given above, 

the bubble must grow to a macroscopic size of R = 1 millimeter.    The 

total range of r, (= R(t)/R ) will then be from 1 to 500.    The problem of 

determining the condition for incipient cavitation is now reduced to the 

following que«tion.    What time interval, as a function of the bubble - 

driving parameter a and the bubble air-content parameter   Y  is required 

for the bubble to reach a radius which is 500 times its initial value?   To 

answer this question one must find a two-parameter family of solutions 

of £q. (10) of the form x =  F(o.'Y).    The dimensionless time parameter, -, 

is a function of the body length, free stream velocity, and cavitation number. 

The air content parameter, V, will be given and  a ,  the bubble-driving 

parameter, is a function of the cavitation number and free stream velocity. 

Then if   T = F(a, Y) is known, a trial and error procedure will give the in- 

cipient cavitation number when the free stream velocity is known. 

Equation (10) is easily reduced to quadratures,   so that the dimension- 

less time  T is given by 
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.3/2 dr 

Vla^DW.mr.^^-^i) 
(13) 

*500 
*/*dr 

•    / f   
I        , / 2 -/  3   ,v  ,  ,vi             , /r2n^+n+A J5      Y   T»(r  -l) + 2Y*nr  -2^  \ 

The two integrals arise because cf the change in the surface tension law 

at r = r. = 5.    Since the variations in T are required for small changes in 

a and V,  approximate representations for Eq. (13) will be limited in value 

for those cases where a  is near the critical bubble-driving parameter o  . 

In any event*  numerical integrations have to be precise for the first inte- 

gral in Eq. (13). 

For the range of the air content parameter. V ,from 0 to 1.8, with 

corresponding values of the bubble-driving parameter, a, from 0.145 to 

0.230, ninety-eight integrations of Eq. (13) were carried out on an I.B.M. 

calculator.    From these results the functional relationship,  T = F(a, V), 

represented by Eq. (13) was plotted as in Fig. 5.    Tabulated data, from 

which the figure was made, are given in Table I. 

After the above trial and error calculations for incipient cavitation 

number versus velocity have been made for different values of the air 

content parameter V,  comparisons between experimental results and the 

calculations for the given shape could be used to obtain a measure of the 

success with which the surface tension law parameter,  n, was chosen. 

It will be noticed from Fig. 4,  that the slopes of the curves for critical 

bubble-driving parameter, a   , versus the critical bubble air content 

parameter, Y   , are steepest for low values ot the surface tension law 

parameter.    Thus, the cavitation number for incipient cavitation will be 

smaller for steeper slopes of the surface tension law,  S(R,<r), than it will 

for a surface tension law with more gradual slope (large n).    If sufficiently 

reliable data are available, a comparison with the calculated curves for 

incipient cavitation will suggest a better choice for the effective surface 

tension law parameter,   n.    Because there are almost no reliable data at 

this time,  these alterations of the calculations will not be made here. 
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Propcrties of the "Parabolic" Pressure Function 

As noted previously, the step function results will be related to the 

growth of a bubble under a more realistic pressure-time forcing function. 

The important general features of many such actual forcing functions can 

be qualitatively represented by two functions which are parabolic in time. 

One function which decreases from C   = 0 to C   =   -b and another func- 
P P 

tion which increases from C   = -b to C   = 0 will be employed.     Two 
P P 

functions are used because the pressure distributions around actual bodies 

are seldom syrvu .trical in the streamwise direction.    Fig. 6  shows the 

parabolic pressure distribution.    The required results for the "parabolic" 

pressure distribution will now be obtained. 

Decreasing part,   0»t C^t  -b: 

The equation of a time parabola which decreases from C    =• 

C    =   - b in a time interval T, may be written as 
P 

0 to 

V> 

to  ll»l 

10   IM) 

-b 
T       \T/ 

(14) 

where t is any time in the interval O^t^T 

(Fig. 6). From the Bernoulli equation dx/dt = 
vo V1 " cp(x) • where x is the distance V * 

along the stream line adjacent to the body. 

Under the conditions x = x(t), with dx/dt Jf 0 

one may write dx/dt * VQ Yl - Cp(t).     If 

x(0) = 0 and x(T) = lj,   one obtains 

Fig. 6 - The time-parabolic 
pressure law 

or 

-vyv TV0Vb     Jc 

1 +b -(l-~)    d(f) 

2 1, 

,(VF>^--lV^)^ 
(«5) 
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When C   =   - K,   that is, the pressure coefficient on the body is equal to 

minus the cavitation number for the flow, the pressure in the water around 

the bubble is equal to the vapor pressure of the water.    Inspection of Eq. 

(5) shows that the bubble can not start to expand until it has reached a point 

on the model where  C    =  - K.    The region for which C  ^ - K will be 
P * P 

called the region of "favorable environment" for bubble growth.    Thus the 

time that is of concern here is the time during which the bubble is in a 

favorable environment. The value of (t/T) for which C = - K is ob- 

tained directly from Eq. (14). If t. is the required value of the time, 

then 

but the time interval    At.   spent by the bubble in the favorable environ- 

ment is (T - t.).    Hence    At. aT\/(b - K)/b,  or substituting for  T   one 

finds 

2 i, Vb - K 
*i =    ; l =T    ' (16> 

Vo(Vbr(l*b).in-1^5^) 

The relationship x = x(t)  can be found by suitably altering the limits of 

integration in the integral leading to Eq. (15).    If Eq. (15) is solved for  I. 

and divided into the result for  x = x(t),  one obtains 

h /TV i + b  . -l r~b 
Vb b V 1 + 

b 

=   l == == "   (17) 

Increasing part,    -b ^ C   «£s 0; 
 _ F      , 
For the portion of the pressure distribution downstream from the 

minimum pressure point,   one can write 

cp(t) - rh^ r (m - 1) 

v2 2 

(7-'   -(-0 (16) 
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where  i 4k -if— ***••    Thui,  C (T) = -b and C (mT) « 0.   In a manner 

similar to that used in obtaining Eq. (15), the analogous result 

2 1, 
(m-l)T    =    -      • 09) 

v^^-'VS)^ 
is obtained.    Here 1, is the distance along the stream line next to the 

body from the point where  C    = - b to the point where again C   - 0- and 

T is given by Eq. (15).    The time t, at which C   = -K is obtained from 

Eq. (18) 

t, /b-K 
-£   - 1   =   (m - 1) 

The period spent by the bubble in the favorable environment for this por- 

tion of the pressure distribution is given by  At, - (t, - T).    Substitution 

for (m - 1)T from Eq. (19) yeilds 

At 
21, V^-K) 

2 
VQfbf (14-b) sin*1   Y b 

TTF 

(20) 

As before,  the space-time relationship can be found in a manner similar 

to that employed in deriving Eq. (17).    Thus, 

(r-l)\L* (r-lj . itb,.-I(T-'Yrr- 
—     — I I II-   • I , 

1, 
VI 1+b     . -1 -/ b 

TTP 

where x is measured along the stream line from the point for which 

C   * -b.    From Eq. (15) the expression for  T can be put.into Eq. (19) to 

find m.    This substitution gives 

(m-1)   =  -i (22) 

'l 
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The "parabolic" curves are compared with the Joukowski and the  "Hemis- 

phere" experimental pressure distributions in Figs. 8 and 10.   Equations 

(16) and (20) can be added to find the total time,    At =   Atj + At2, that a 

bubble spends in the whole region of favorable environment, and one finds 

At   =    i i—  (23) 

Vo (Vb^O+bJsin^Y^TJ 

It is this value of the time    At which determines the dimensionless time  T- 

For a given pressure distribution,  I., l?, and b are known quantities    and 

V  , the free stream velocity, will be given so that K is the only unknown 

factor required to find  At or T. 

Dynamic Equivalence between the Step and "Parabolic" Pressure Laws 

The preceding preliminary calculations now make it possible to ap- 

proximate the relationship which must obtain between the idealized step 

function pressure distribution and the more realistic "parabola-like" 

pressure distribution if the essential features of the bubble growths are 

to be the same in both cases.    The matching will consist of two parts. 

First, the time spent by the bubble in the low pressure region will be taken 

to be the same for both the step function and the parabolic pressure laws. 

Second, the equation of motion (1) will be integrated in closed form by ap- 

proximate means io* both the step function and the parabolic pressure 

laws.    The two approximate bubble histories will be said to be dynamically 

equivalent when the total bubble growths under the two pressure laws are 

equal.    These two conditions will result in approximations of the required 

relationships between the step and parabolic pressure functions. 

The first point of comparison for the two pressure laws is the re- 

lationship between the time intervals during which the nucleus is exposed 

to the favorable environment in each case.    It will be specified that the 

time spent by the bubble in the favorable invironment shall be the same 

for both tht: step function pressure law and the "parabolic" pressure dis- 

tribution.   In both instances the free stream velocity,  V  ,  will be identi- o 
cal.    From Eq. (4),  the pressure coefficient for the pressure step is 
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for f. < 0 ,  cr   x < 0 , 
C    »  < f24) 

P 
-a     for t 4m. 0,    or   x^'0, 

* 

If the bubble is assumed to grow in an interval O^x ^\ then the same 

reasoning which gave Eq. (15) gives      t »    ••• ,   where   At is the 
v0vnT 

total time during which the bubble is exposed to the low pressure and X is 

the distance along a streamline traversed by the bubble in the time    At. 

Equating this result to the     At of Eq. (23) gives 

2(ij+l2) V°-K 

Vb   + (Ub)sin1/^ 
(25) 

If a relationship between a and b   can be found, then X  will be given in 

terms of known quantities. 

The second point of comparison is the requirement that the total 

bubble growth in the time interval of favorable environment must be the 

same for the two pressure functions.    This requirement, which will result 

in a relationship between a and b, will be called dynamical equivalence. 

The a   priori derivation of an exact condition for the dynamical equivalence 

of the two cases is formidable in view of the fact that to obtain such a pre- 

cise result the equation of motion (1) must be integrated in exact analytical 

form.    It will be worthwhile to use an approximate method of integration 
g 

due to M. S. Plesset.      Plesset's   method, while lacking rigorous justi- 

fication, has been shown to give results in close agreement with precise 

numerical results if the right-hand side of the dynamical Eq. (1) is a 

function which increases exponentially with time.    In this instance, 

Plesset's method approximated the exact numerical results within 0.3% 

for sufficiently large values of the bubble growth time.    On the other hand, 

if the pressure is constant, it can be shown that this approximation will 

give the final bubble radius with an error of about 5%.*   Thus, if the right- 

hand side of the equation of motion, Eq. (1), is a monotonic  function of 

*This comparison approximates the effect of surface tension for bubbles 
growing through the specified size range because, when surface tension and 
air content are negligible, Plesset's method is exact.    This comparison was 
made for bubbles with surface tension and initial internal air pressure. 
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time, it is evident that a suitable approximation for the final bubble size 

will result.   Plesset's method is based on the supposition that the right- 

hand side of the equation of motion is a monotonic   function of time.    It is 

unfortunate that this condition will not be entirely satisfied here.    After 

obtaining the required approximate result, it will be used to define a pair 

of dynamically equivalent pressure distributions so that numerical inte- 

grations can be performed to test the reasonableness of the approximate 

method. 

The equations of motion applied to each case differ only in the form 

of the forcing function on the right-hand side, because in one case a step 

function is taken while in the other case a "parabolic" dependence is as- 

sumed.    Thus, it seems reasonable that in comparing the behavior in the 

two cases,  one can discard the surface tension and air content terms. 

This approximation may be partially justified by recognition of the fact 

that both the surface tension and the air content terms decrease very 

rapidly as the bubble grows.    Thus  Eq. (1) can be written in the form 

RR   +  1   R2   =   g(t) (26) 

where  g(t)  is given for the step function case by 

g(t) 

^V0
2(-K)     ,     t<0   , 

and for the parabolic case by 

g(t) = \ v0
2b[bJlK _(1_±)2    , 

2    °       L   b T    J 

with 

0*(l-\)*yj /b-K 

(27) 

(28) 

Equation (28) accounts for only the portion of the parabolic pressure 

curve lying upstream from the minimum prescure point which is in the re- 

gion of favorable environment.    The growth in the second portion of the 

parabolic pressure curve will be accounted for by approximating the slope 

of the growth curve at the minimum pressure point and multiplying this 



-24- 

slope by the time interval of favorable environment   at, (Eq. 20). 

Plesset's approximate integration method is based upon the condi- 

tion '.hat in Eq. (26) g(t) is a function that does not permit the acceleration 

of the bubble wall ft to become negative; then 

r *2~ 

Consequently.- 

Rft = g(t) - |R*^0. (29) 

ft2 ^ | g(t)   ,     or 

/  (30) 

R^y|g(t)     . 

Integration of (30) gives 

*- Ro^XVT«^de • (3l) 
0 

where  R    is the radius at the initial time t  .    Now define a function ©(t) o o 
such that 

R "  R0 = 9 (t) r^/| gtf) d e = <P (t) I(t)   . (32) 

Because of Eq. (31),  the function  <p(t) is of bounded variation: 

0 ^ <p(t) ^ 1     . (33) 

Equation (32) is a formal solution to Eq. (26).    Accordingly,   substitution 

of (32) into Eq. (26) gives the exact differential equation, 

(Ro+ <f,l)($I + 2<j>i + (pf) +  |(<pl + i<p)2 = |i2   . (34) 

liquation (34) will now be approximated with the assumptions that 

<P I + 24> t    <3C <P I   , 

* i <<c <P i , 

and R   ^T<p I   . o 

A first approximation for <p   is then given algebraically by Eq. (34). 
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<p sa (35) 

I + 
2ll 

31* 

This result, together with Eq. (32),  gives the required approximate inte- 

gration.   In order that the parabolic case can be treated by means of the 

linear extension outlined above, the derivative dP.(t)/dt must be found.  If one 

takes   account of the inequalities preceding Eq. (35) the derivative is 

given by R 9& <f\.    From the results following F.q. (19)    Lt^ a (t^ - T)   = 

(m -l)T^(b- K)/b  so that the linear growth to be added is 

R(T)   At2 «s  <r I (m - 1) T Vb - K 

-7" 
Hence the total growth in the parabolic case is 

R - RQ s*s  <P (T) I(T) +   I(T)(m - 1) T /b - K 
VT-. (36) 

Substituting the equation for  g(t) (Eq. 28)  into the integral for  i(t), 

one finds, 

'<«) -r _v!-iv.i"iHi-<i-»i]d- •• 

or putting   y =   (1 -«VS K 

I(t)  = - TV, •V^ 
1      T'V b-K 

VI -y2   dy  = 
2 

J(b-KV 
V      3b T 

+   sin 1<> -4»VS• c -^V^V'-^*'-f» 
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Hence, 

I(T)    = 
4 °V     3b 

From 

M/T ̂ - 
i(t) * — I1"1)2 

b - K\    T/ 

it follows that, 

i(T) •W48- 

(37) 

-,M..:.K)V^ 
V'-A('4)! 

and  !(T)   =   0   . (38) 

From Eq. (33) and Eq. (35),   ? (T) % 1   so that R - RQ,  Eq. (36), 

becomes 

R - RQ *» T VQ (I + m - 1U / (b~K? (39) 

for the parabolic case. 

Kt)    =    /    VJ   yV0
fc(a-K)    dt (40) 

Because the time spent in the favorable environment is the same in this 

case as it is in the parabolic case, the time interval for Eq. (40) is equal 

to the   At   of Eq. (23).    It is easy to see that  At = mT \/(b - K)/b    so 

that 

K«) = mVoTJH-!X±s«L.   . (4i) 

Inspection of Eq. (40) shows that t(t)  = 0   so that <p (t)  =  1.    For this case 

Eq. (32) alone suffices to give the approximate integration required,  and 

hence 

R - Rog» m VQT A /if—*Hb Z K) (42) 

The requirement for dynamical equivalence can be applied to Eqs. (39) and 

(42) to give 
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m   Ma - K  *4 (-1 + m - 1)    ^b - K      . (43) 

Thus, the relative shapes of the step and the parabolic pressure distribu- 

tions are now specified by 

2(4, + 1,) yb-K 

vnr     Vb +(i+b)siniyii 

. /IT/4 • m - 1\         
\ra - K «s f ) \/b-K    , (43) 

m 

and 

(m - 1)    =    i2/ij     . (22) 

The above matching conditions were checked for one case of incipi- 

ent cavitation on the two inch Joukowski hydrofoil.    From the trial and 

error calculations presented below (p. 29 )» it was found thit when the free 

stream velocity is 16 meters per second the incipient cavitation number, 

K, is 0.403, and hence the bubble-driving parameter, a ,  is 0.190 and 

the dimensionless time.T. is 1400.    The equation of motion (1) was inte- 

grated for the case where the air content parameter, V,  is  1.0 and the 

P(t) term is composed of the parabolic lavs (16) and (20).    The numerical 

solution gives a bubble diameter of 2/3 mm. at the end of the specified 

time interval.   If the matching had been exact the final bubble diameter 

would have been 2 mm.     The two results are comparable, well within an 

order of magnitude.   Hence,  one may cor.clude that the matching condition 

(Eq. 43) between the step and parabolic pressure laws will give reasonable 

results for the present application. 

Scaling Laws for Incipient Cavitation at High Free Stream Velocity (Vp—» co) 

It is now possible to obtain a relationship for cavitation scale effect 

for very large values of the velocity,  V .     As the free stream velocity, 

V , becomes very large, the bubble-driving parameter,  a »  (see Eq. 7) 
° 2 •ncreases as V         From Eq. (23) it is clear that the time,   At   (and hem o     j —r»   * 

T   since T =   At "y2<r/pR   ) decreases as  l/V .     Hence for o »  1, 
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Eq. (13) can be approximated by 

(44) 

.)^-(b-K, 

This result for a follows from Eqs. (7) and (43).    From Eq. (23) the rela- 
tion, 

2(lj + l2)    ^Jb-K 
T   = 

vo^vb"+(i+i>) sia"lV 

will be used for T in Eq. (44).    For geometrically similar bodies, (4}+ 4?) 
will be some constant multiplied by the characteristic body length L.    Using 

this fact and substituting for T and  a  into Eq. (44),  one finds 

L Vb^K-   _ C (45) 

Vo V<b"K)Vo2 

where  C is a constant.   Suppose now that a given body running at very high 

velocity has a characteristic length L    and is founrf to have an incipient 

cavitation number X  -    Thrv. «f another r.imilar body in high speed flow has 

length L and incipient cavitation number K,  the relationship (b - K )/(b -K) 

s L/L    must hold.    This last result can be written in the form 

K 

K_ 

subject to the condition that V  .  the free stream velocity,  is very high. 

Just how high the velocity V    must be is determined from more detailed 

calculations below.    A plot of K/K    versus  L>/L    is given in Fig. 7 for 

values of b/K    from  1.0  to 2.0. o 
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Calculate > •« for Incipient Cavitation on the Joukowski Hydrofoils 

Calculations for incipient cavitation on the Joukowski hydrofoils will 

now be made by means of the procedures developed above.    The relation- 

ships which must be used for the numerical work are 

a . [i       _•_•    (b-K)    ; 

(m - 1)   n   i^ 

T   * 
mx •12) yb-K 

^T + (l+b) sin "V^) 
KSSNLIM STNEAMLIMC DISTANCE* *U)N« •00V. 

.j .>MUS0UC*MC 
•>AIUS0OC* AM 

it. <en 

Fig. 8 

and a graph of the function T • F(of Y), 

Fig. 5.   In order to find m, the experi- 

mental pressure distributions for the 

three Joukowsky hydrofoils were cor- 

rected for tunnel blockage (1),   and a 

single curve was faired through the 

points, as shown in Fig. 9>.   It was ob- 

served experimentally that the first 

visible cavitation on the hydrofoils 

occurred at about 20% of the chord, c, 

from the pctn* where the pressure 
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distribution C    is first zero.    In an effort to account for this experimental 

fact, the distance 1, was taken to be equal to 0.25 c - iy    The length Ij 

was determined by measuring the distance from the minimum pressure 

point to that point where the pressure coefficient, C  : i» zero nearest to 

the leading edge of the hydrofoil.    These measurements gave i>A» 

14/11   so that (m - 1)  = 1. 27.    These geometric relationships and the ap- 

proximating parabolic pressure distribution are shown in Fig. 8.    If one 

takes  a a 70 dynes/cm,   R   =  il x 10     cm,  p=  1 gram/cm  , b = 0.53, 

the equation for the dimensionless time is 

T   =    1.28 xlCT   -f-  yjO. 53 -K      , 
o 

and for the bubble-driving parameter, 

e    =    0.581 x 10"6 (0.53 - K)  V0
2    . 

By means of.the graph for T  = F(o, \),  with \ = 1.0  ,    trial end error 

calculations were made to find K for values of the free stream velocity 

V   of from 900 cm/sec to 3000 cm/sec for each of the three chord lengths, 

2 in. (5.08 cm), 4 in. and 8 in.    The calculations were extended to infinite 

velocity by means of Eq. (45) (for this case C = 550 cm).    For the case 

c = 4 in., the calculations were repeated for zero air content (v = 0).    From 

these calculations, curves of incipient cavitation number K versus the ratio 

c/VQ are given in Fig. 9.    The calculated results are also compared with 

experiment in Fig-. 9<    The experimental scatter is too great to draw any 

definite conclusions as to the applicability of the theoretical results.    The 

calculated curves show the tendency for the cavitation number to increase 

with velocity for all scales, and,  except for the higher velocities, no scale 

effects are found at constant velocity.    The data do not conclusively prove 

or disprove these theoretical findings. 

v  s 1   corresponds to an initial bubble air pressure of 700 millibars 
or a dissolved air concentration of 70%, the saturation concentration for 
an air pressure of 1 atmosphere above the water. 
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Calculations for Incipient Cavitation on the "Hemispheres" 

Calculations were srunde for the inception of cavitation on right cylin- 

drical bodies with hemispherical noses.    The etme body sizes were se- 

lected as were used by n- VT. Kermeen in MP «xperiments (see Ref. 1). 

Kermeen found that the dissolved air concentration in the water during his 

cftqaerimentd was about one-half of the saturation value for <in air pressure 

of one atmosphere.    The corresponding value of the air content parameter, 

v, was taken to be 0. 7. 

a 
The experiments of Ruiiic    show that, b, 

the absolute value of the minimum pressure 

coefficient on the body, increases from about 
5 

0. 65 at a Reynolds number of 0.6 x 10    to 

*•*•    to. Wtl 

ffsaumuCtm 
te in» 

0.74 when the Reynolds number is greater 
5 

than or equal to 1. 2 x 10  .    This change in 

the minimum pressure, b, was accounted for 

in the determinationis of the dimensionless 

time, T, (Eq. 23) and of the bubble-driving 

Fig. 10 parameter, o , (Eqs. 7 and 43).    The 'Vara- 

belie" pressure distribution was fitted to the 

experimental pressure distribution by selecting for the pressure distribu- 

tion asymmetry factor, m, a value of 1.45.    Figure 1C compares the ex- 

perimental and the "parabolic" pressure distributions when the Reynolds 

number is in the supercritical regime (Re a3» 1. 2 x 10 ).    Trial and error 

calculations were then performed in the same fashion as for the Joukowski 

hydrofoils.    The calculations are compared with Kermeen!s data in Fig. 11. 

It will be seen that the calculated values of incipient cavitation number are 

in poor agreement with experiment.    The disparity between the experi- 

mental and the calculated results increases.as the sixe of the body de- 

creases.    There are two possible reasons for the disagreement.   Either 

the mathematical approximations used in developing the theory are too 

great, or some physically important effect (such as that due to the bound- 

ary layer) hao been overlooked.   It may well be that both of these factors 

contribute to the large differences between theory and experiment. 

It will be noticed in Fig. 11 that for the 2,  1 -1/8 and l/4 inch models 

the experimental data for incipient cavitation number seem to show little 
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or no dependence upon the free stream velocity, V_ , when V is greater 

than or equal to 80 ft per sec. This apparent independence of the incipi- 

ent cavitation number with free stream velocity corresponds to the theo- 

retical conditions leading to Eq. (46). Equation (46) relates the incipient 

cavitation number to the characteristic body length of similar bodies 

unde:  the condition that the free r> 
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stream velocity is very high.    The 

incipient cavitation number under 

this condition is said to have at- 

_      tained its limiting value.    If it is 

supposed that the experimental 

data,  for the highest free stream 

velocities measured,  approximate 

such limiting values of the incipi- 

ent cavitation number,  it is reason- 

able to compare the experimental 

points for this case with Eq. (46). 

The data for incipient cavitation r^mber on each model at the highest test 

velocity were avraged and plotted against model diameter in Fig.   12. 

Equation (46) waj .!iCu fitted to the experimental points twice at diameters 

of 1/4 in.  a.i»d 2 in. ,   respectively.    The two curves are shown in Fig.   12. 

It will be seen that the agreement between experiment and theory is best 

when the calculations are fitted to inc smallest model.    The free stream 

velocity in all ca:.^s •*'•»< at least 80 rt •:•• Perhaps data for even 

higher values of  V0 would give better agreement when the theory is com- 

pared with experiment.    More experiments must be made to test this point. 

The theoretical trends (Figs   9 cr-d 11^ jeem to indicate that the limiting 

value for the incipient cavitation number will be attained for higher veloci- 

ties,   V_ ,  for larjc bodies than for small models.    If this trend is correct 

it means that most water tunnels cannot reach high enough speeds to make 

use of this theoretical approximation when models with low pressure re- 

gions larger than that of the two-inch diameter hemisphere are tested. 

It will be recalled that in deriving Eq. (46),  as with all other theo- 

retical results,   two basic approximations were made.    First,   the pressure 

was estimated from experimental results and Bernoulli's Law.    Second, 

the time during which the nucleus is exposed to a low pressure condition 
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where bubble growth can occur was estimated from the body length and the 

liquid velocity along the body just outside the boundary layer.     The appli- 

cation of Bernoulli's Law should give quite accurate  results.     One must 

conclude,   therefore,   that the time estimates are not good enough for the 

present purposes.     Furthermore,   if one traces through the calculation 

procedure for the inception of cavitation,   he will find that underestimating 

the time results in an underestimate of the cavitation number for incipient 

cavitation.     The present calculations do not account for the possibility that 

at least a portion of the bubble growth occurs in the boundary layer where 

the time available for growth would be greater than the time estimates 

used here.    Thus,   before one can make predictions for the inception of 

cavitation with confidence,   the boundary layer's effect "n growing cavita- 

tion bubbles must be understood. 
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PART  III 

COKCT USIONS* 

It is found by experiment that < ivitation on submerged bodies in a 

rectilinear flow shows decided changes in its development as the free 

stream velocity and body size are changed.    It is found that under certain 

conditions the incipient cavitation number depends on both body scale and 

free stream velocity.    Of these two effects,   that due to changes in free 

stream velocity is the greater,   and most of the monotonic increase in 

incipient cavitation number with free stream velocity occurs below a free 

stream velocity of 60 fps.    In the velocity range between 30 and 60 fps the 

cavitation number changes by about 25% of its maximum value.    For ve- 

locities above 60 fps the incipient cavitation number increases by less than 

10% of its maximum value.    At constant velocity the incipient cavitation 

number increases with scale.    However,  more work must be done before 

truly quantitative results can be £iven for the scale effect at constant 

velocity. 

It was found that one cannot obtain useful scaling laws for limited 

cavitation from similarity arguments.    In fact,   the similarity calculations 

show that one may expect limited cavitation to be affected by both body size 

and free stream velocity.    One is then led to conclude that the cavitation 

number,  K,   is not the only significant parameter required to define the 

limited cavitation flow regime.    Both experiment and analysis indicate 

that one must specify the model size,   free stream velocity,   dissolved air 

content and the cavitation number if he wishes to describe completely an 

experimental situation for an immersed body of specified shape.    The 

condition of the body surface should also be specified,   but this effect has 

not been considered in this paper.    Although it is convenient to use the 

cavitation number, K,  for theoretical calculations,   one would be closer 

to the physical relationships if,   instead of the cavitation parameter,   he 

specified the liquid vapor pressure and the free stream static pressure. 

From the lack of agreement between experiment and the greatly 

simplified theoretical calculations presented in this report,   one can 

These conclusions summarize the results of both the preliminary 
report(l) and the: v/ork presented in this paper. 
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conclude that the neglect of the rolr of the boundary layer is not justified 

for precise predictions of the effects of model scale and free stream ve- 

locity upon the inception of cavitation.     Further,   the use of an arbitrary 

linal radius instead of a  specified maximum radius for the required babble 

growth may have introduced an extraneous variability in the: calculations. 

On the other hand,   the qualitative agreement between the experimental and 

calculated trends for incipient cavitation number versus free stream ve- 

locity and body size,   substantiates the basic premise tha1  scale effects in 

limited cavitation arise because of transient pressure effects on the nuclei 

in the liquid flow. 

A combination of simple theoretical considerations and some of the 

experimental d.^ta for incipient cavitation gives estimates for the effective 

initial nucleus radius.    It is found that for the water used in the experiments, 
-4 -3 the calculated effective initial radius is between 10     and 10      centimeters. 

For the limiting case where the free stream velocity approaches 

infinity,   it is found that the cavitation number,  K,  for incipient cavitation 

does not approach   b,  the absolute value of the minimum pressure coef- 

ficient on the submerged body.    Instead,   the limiting value of the incipient 

cavitation number approaches a value less than   b,  and the difference, 

b — K,   is found to be inversely proportional to the characteristic body 

length,   L.    The theory closely approximates the experimental   results if 

the equation is fitted to the data for the smallest model.    More experi- 

mental work is needed to demonstrate the complete validity of this result. 



-38- 

BIBLIOGRAPHY 

1. Parkin,   B.   R. ,   "Scale Effects in Cavitating Flew   -   A Preliminary 
Report",   California Institute of Technology,  Hydrodynamics 
Laboratory Report No.   21-7,   December 195!. 

2. Reichardt,   H. •   Reports and Translations No. 776,   Ministry of 
Aircraft Production    (1946);   distributed by Office of Naval 

( Research,  Navy Dept. ,   Wi  V.ington,  D. C. 

| 3.      Kermeen,   R. W.,   "Some Observations of Cavitation on Hemispheri- 
cal Head Models",  California Institute of Technology,  Hydro- 
dynamics Laboratory Report No.   E 35. 1,   June 1952. 

4. Eisenberg,  P. ,   "On the Mechanism and Prevention of Cavitation", 
David W.   Taylor Model Basin Report No. 712 (1950). 

5. Rattray,  Maurice,  Jr. , "Perturbation Effects in Bubble Dynamics", 
California Institute of Technology,   Hydrodynamics Laboratory 
Report No.   25-5,   January 1951. 

6. Eprtein,  P. S. ,  and Plesset,   M. S. , "On the Stability of Gas Bub- 
ble « in Liquid-Gas Solutions",   Jour.   Chem.   Phys. ,   Vol. 18, 
No.   11,  pp.   1505-1509,  November 1950. 

7. Epstein,  P. S. ,   "Textbook of Thermodynamics".    John Wiley and 
Sons,  Inc.  (1937).     Ch.  IX,    p.   159. 

8. Plesset,  M. S. , "Rate of Formation of Vapor in a Uniformly Heated 
Liquid".    North Ame rican Aviation,   Ir.r . ,  Spc<-.;-l P.esearch 
Report NA^-5R-53   (1949). 

9. Rouse,   Hunter,  and McNown,   J. S. . "Cavitation and Pressure Dis- 
tribution",  and "Head Forms at Zero Angle of Yaw",   State 
Univ.   of Iowa,   Studies in Engineering,   Bulletin 32,   p.   12, 
(1948). 


	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043



